

(Library ebook) A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice (Oxford Studies in Music Theory)

A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice (Oxford Studies in Music Theory)

Dmitri Tymoczko

*ePub | *DOC | audiobook | ebooks | Download PDF*

DOWNLOAD

READ ONLINE

#173818 in eBooks 2011-03-21 2011-03-21 File Name: B005254IXS | File size: 62.Mb

Dmitri Tymoczko : A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice (Oxford Studies in Music Theory) before purchasing it in order to gage whether or not it would be worth my time, and all praised A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice (Oxford Studies in Music Theory):

0 of 2 people found the following review helpful. Brilliant! Exciting and thought-provoking! Seminal and novel By BleepThe tip of the iceberg. An exciting analysis and synthesis of musical styles and development, hopefully this work will become the progeny of many future works as it is rich in ideas. This work adds additional ways of seeing music

that are not clearly apparent with standard notation. I was surprised that so many of the composers artists and works were ones that I had noted to be significant in there avant-garde expansion of musical boundaries. A joke punchline is achieved by misdirecting the audience to believe that the joke is taking them in one direction when it is actually taking them where they did not expect. likewise, many of the clusters of tones in jazz, Tristan, Shostakovich, Debussy, Chopin and others, create ambiguity about the intended direction and resolution and these clusters may contain many possible future paths, thus making anticipation difficult and surprise likely. 8 of 8 people found the following review helpful. limited practicality for composition or even analysis By Anonymous An interesting academic read with little practical utility imo. While technically very accurate, tediously mapping voice leading onto multidimensional graphs isn't overly superior than just looking at the notation or other easier methods. And while geometry validates rules of thumb that are already common practice (no pun intended), those rules of thumb are still a lot easier than the analysis methods presented in this book. A lot of "lecturing birds on flying" i'm afraid. So yes as an academic work, pretty good. But for the "ideal composer" as the book was intended...meh. Theory with little practical application. 5 of 14 people found the following review helpful. This book is brilliant. By Hastie Studio For those of us that did not go to music college and who are self taught and study music daily, this book is an invaluable resource. It explains music theory in a unique way that I have yet to see from any other source (if there is another book out there that offers such an approach, I would like to know about it). Music is in many respects a mathematical language and basing the study of it around including its geometrical forces is a great way of finding a new understanding. Maybe many of his ideas aren't (completely) new as some reviewers have asserted, but they are presented in a way that is accessible and understandable to those of us without a higher education (I would also think that many with music degrees would ALSO benefit from this book as well though). Having said that, the novice -should- study a traditional harmony book such as Piston's Harmony -before- reading this book. Had I not done that, much of the terminology, ideas and principles would not have made sense to me. This book has made me want to re-tackle my old Piston Harmony book and others yet this time, with a fresh insight and a new perspective. I will be studying this book alongside the old standard curriculum such as Piston's for a very long time to come. It has already helped my learning and my teaching as well (I teach beginner and intermediate piano students). I have read some of the egg-headed reviews that cast aspersions on this book and I completely disagree with them, so much so that I chose to write this review, something that I do not normally do. My response to them would be that if you are that learned, that smart, that all-knowing, then why are you even bothering to read this book or any other book for that matter? Great book, get it, study it and it will give you a fresh view on many old ideas perhaps some that you have been already been studying for many years prior. I would like to add that this book is most helpful with regards to the study of harmony and chords in classical music though it is ALSO very insightful for the study of 20th century music and jazz as well. The last couple of chapters are about these more contemporary genres and it has sparked my interest in music that I don't generally care for or seek out. I would love to sit in on the Professor's classes one day, though I live in Louisville, and I doubt that will ever happen! But, who knows, at least I have this book!

How is the Beatles' "Help!" similar to Stravinsky's "Dance of the Adolescents?" How does Radiohead's "Just" relate to the improvisations of Bill Evans? And how do Chopin's works exploit the non-Euclidean geometry of musical chords? In this groundbreaking work, author Dmitri Tymoczko describes a new framework for thinking about music that emphasizes the commonalities among styles from medieval polyphony to contemporary rock. Tymoczko identifies five basic musical features that jointly contribute to the sense of tonality, and shows how these features recur throughout the history of Western music. In the process he sheds new light on an age-old question: what makes music sound good? *A Geometry of Music* provides an accessible introduction to Tymoczko's revolutionary geometrical approach to music theory. The book shows how to construct simple diagrams representing relationships among familiar chords and scales, giving readers the tools to translate between the musical and visual realms and revealing surprising degrees of structure in otherwise hard-to-understand pieces. Tymoczko uses this theoretical foundation to retell the history of Western music from the eleventh century to the present day. Arguing that traditional histories focus too narrowly on the "common practice" period from 1680-1850, he proposes instead that Western music comprises an extended common practice stretching from the late middle ages to the present. He discusses a host of familiar pieces by a wide range of composers, from Bach to the Beatles, Mozart to Miles Davis, and many in between. *A Geometry of Music* is accessible to a range of readers, from undergraduate music majors to scientists and mathematicians with an interest in music. Defining its terms along the way, it presupposes no special mathematical background and only a basic familiarity with Western music theory. The book also contains exercises designed to reinforce and extend readers' understanding, along with a series of appendices that explore the technical details of this exciting new theory.

.com Product Description How is the Beatles' "Help!" similar to Stravinsky's "Dance of the Adolescents?" How does Radiohead's "Just" relate to the improvisations of Bill Evans? And how do Chopin's works exploit the non-Euclidean geometry of musical chords? In this groundbreaking work, author Dmitri Tymoczko describes a new framework for

thinking about music that emphasizes the commonalities among styles from medieval polyphony to contemporary rock. Tymoczko identifies five basic musical features that jointly contribute to the sense of tonality, and shows how these features recur throughout the history of Western music. In the process he sheds new light on an age-old question: what makes music sound good? *A Geometry of Music* provides an accessible introduction to Tymoczko's revolutionary geometrical approach to music theory. The book shows how to construct simple diagrams representing relationships among familiar chords and scales, giving readers the tools to translate between the musical and visual realms and revealing surprising degrees of structure in otherwise hard-to-understand pieces. Tymoczko uses this theoretical foundation to retell the history of Western music from the eleventh century to the present day. Arguing that traditional histories focus too narrowly on the "common practice" period from 1680-1850, he proposes instead that Western music comprises an extended common practice stretching from the late middle ages to the present. He discusses a host of familiar pieces by a wide range of composers, from Bach to the Beatles, Mozart to Miles Davis, and many in between. *A Geometry of Music* is accessible to a range of readers, from undergraduate music majors to scientists and mathematicians with an interest in music. Defining its terms along the way, it presupposes no special mathematical background and only a basic familiarity with Western music theory. The book also contains exercises designed to reinforce and extend readers' understanding, along with a series of appendices that explore the technical details of this exciting new theory.